Supporting Information for

CARBON FOOTPRINT AND ENERGY ANALYSIS OF BIO-CH4 FROM A MIXTURE OF FOOD WASTE AND DAIRY MANURE IN DENVER, COLORADO

Sharath K Ankathi, James S Potter, David R Shonnard

Links to Section-1, Section-2, and Section-3, Section-4: in the S.I document.

Section-1:

AD Bio-CH₄ Pathway Calculations and Eco-profiles:

This part of the section gives the information on the calculations for the AD Bio-CH₄ Pathway (cradle to grave). AD Bio-CH₄ Pathway has different process operations involved which includes:

1. Eco-profile used for transportation is 'Transport, freight, lorry 16-32 metric ton, EURO4 | market for | Alloc Def, S'

2. Eco-profile used for natural gas use in the AD process is 'Heat, natural gas, at boiler condensing modulating >100kW/US- US-EI U'

This eco-profile (Table 1) was created in SimaPro to estimate the emissions from the combustion of Bio-CH₄. Stoichiometric emission factors for Bio-CH₄ are determined in Table 3.

Table 1. Eco profile for CH₄ emissions Bio-CH₄ Combustion (Basis 1kg Biogas)

Processes	Amount	Unit	Basis
Carbon Dioxide	44/16 = 2.75	kg	1 kg of Bio-CH ₄

This eco-profile (Table 2) is created to estimate the CO₂ emissions from AD process

Table 2. Eco profile CO₂ Emissions from AD process (Basis 1kg Biogas)

Processes	Amount	Unit	Basis
Carbon Dioxide	1.23	kg	$1 \text{ kg of Bio-CH}_4 (.526 \text{ CO}_2 \text{ kg per})$
			kg of 0.425 BioCH ₄)

The densities used in the above mentioned eco-profiles are calculated depending on the biogas composition (on volume basis)¹

Table 3. Density calculations:

					Mass of		
Volume			M.W		Component	M.W*P	*V/R*T
					Normal		
Biogas	1	m ³			Conditions	Units	
Methane	0.65	m ³	16	g/mol	Р	1	atm
Carbon							
Dioxide	0.29	m ³	44	g/mol	Т	298.15	Κ
H ₂ O	0.06	m ³	18	g/mol	R	82.057	cm ³ *atm/K*Mol.

Mass of CH ₄	0.000425	g*m ³ /cm ³
	0.425092	kg
Mass of CO ₂	0.000522	g*m ³ /cm ³
	0.521555	kg
Mass of H ₂ O	4.41E-05	g*m ³ /cm ³
	0.044144	kg
Total mass of biogas	0.990791	kg
Density of Biogas	0.990791	kg/m ³

A Colorado electricity grid was created in SimaPro to estimate the emissions from the consumption of electricity at the AD facility for both internal processes and for distribution of liquid digestate to local agricultural fields through pipelines.

Table 4. Eco-profile for the AD (Anaerobic Digestion) process electricity use is taken from "Colorado grid" Basis 1kWh Energy. Renewable is assumed to be equal portion of hydro, biomass, wind, and solar.

Processes	Amount	Unit
Electricity, natural gas, at power plant/US	0.22	kWh
Electricity, bituminous coal, at power plant/US	0.6	kWh
Electricity from hydroelectric power plant, AC, production mix,		
at power plant, < 1kV RER S	.18/4	kWh
Electricity, biomass, at power plant/US	.18/4	kWh
Electricity from wind power, AC, production mix, at wind		
turbine, < 1kV RER S	.18/4	kWh
Electricity, low voltage {RoW} electricity production,		
photovoltaic, 3kWp facade installation, multi-Si, laminated,		
integrated Alloc Def, S	.18/4	kWh

It is assumed that the compost produced from AD has a moisture content of 50% and 50% by dry weight elemental carbon. Only 48% of the carbon is active and emitted as CO_2^2 . An eco-profile was created in SimaPro to determine these emissions.

Table 5. Eco-profile for CO₂ emissions from AD compost soil application: Basis 1kg wet

0	on	n	00	+
	on	IU	\mathbf{U}	1 L

	Compose					
Processes	Amount	Unit	Basis			
Carbon Dioxide	.48*.5*.5*44/12=0.44	kg	1kg wet compost, 50% moisture, 50% elemental carbon, 48% active carbon ²			

The emission factor for N_2O from the application of liquid AD digestate to agricultural fields near LaSalle, CO is taken from the IPCC and includes both direct and indirect emissions ³.

Processes	Amount	Unit	Basis
Dinitrogen	0.01325*44/14=	kg	IPCC factor for N ₂ O Emissions
Monoxide	0.04164		from Fertilizer land use01325 kg
			N in N ₂ O / N in digestate applied to
			soil. 44 is MW of N_2O , 14 is for N.

Table 6. Liquid digestate N₂O emissions on field application: Basis 1kg N in liquid digestate

Landfill pathway eco-profiles:

This part of the section gives list of all the calculations and eco-profiles for the emissions from landfill for both steady-state case and transient scenario with gas collection, without gas collection and gas collection with electricity generation are listed below. References to the calculations described in section-2.

Table 7. Landfill Emissions without Gas Collection System (uncontrolled) steady state (Basis: 1 kg of dry waste)

	ing of any (rasto)				
Processes	Amount	Unit	Comment		
Carbon Dioxide	79730.50024/365 /216.63 44397=1.01	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CO ₂ emissions are 79730.50024 tons for 1 year) (A+D in Table 32)		
Methane	23721.47/365/21 6.6344397=0.29	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CH ₄ emissions are 23721.47 tons for 1 year) (E in Table 32)		

Table 8. Landfill Emissions Gas Collection System (GCS) steady state (Basis: 1 kg of dry food waste)

			/
Processes	Amount	Unit	Comment
Carbon	128112	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/365/216.63443		section-2 calculations CO ₂ emissions are
	=1.62		128112 tons for 1 year: (A+B+D in Table
			31)
Methane	6128/365/216.63	kg	Daily Basis 216 tons of dry waste (from
	44397 =0.077		section-2 calculations CH ₄ emissions are
			6128 tons for 1 year) (C+E in Table 31)

Table 9. Landfill Emissions Gas Collection System and electricity generation (GCSE) steadystate (Basis: 1 kg of dry food waste)

		<u> </u>	
Processes	Amount	Unit	Comment
Carbon Dioxide	128112	kg	Daily Basis 216 tons of dry waste (from
	/365/216.6344	_	section-2 calculations CO ₂ emissions are
	=1.62		128112 tons for 1 year: (A+B+D in Table
			31)
Methane	6128/365/216.6	kg	Daily Basis 216 tons of dry waste (from
	344397 =0.077		section-2 calculations CH ₄ emissions are
			6128 tons for 1 year) (C+E in Table 31)

Electricity	104025/365=	MWh	104025 Mwh electricity is generated/year
generation from	287		from collected CH ₄ annually (see Table 46
Natural gas			for calculations)

Table 10. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 1 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	9015.890148/365	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/216.6344397=0.	-	section-2 calculations CO ₂ emissions are
	114		9015.890148 tons for 1 year) (A+D in Table
			32)
Methane	2682.413598/365	kg	Daily Basis 216 tons of dry waste (from
	/216.6344397=0.		section-2 calculations CH ₄ emissions are
	034		2682.413598 tons for 1 year) (E in Table 32)

Table 11. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 5 (Basis: 1 kg of dry waste)

		(200101 118 0	
Processes	Amount	Unit	Comment
Carbon	35973.47396/365	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/216.6344397=0.		section-2 calculations CO ₂ emissions are
	45		35973.47396 tons for 1 year) (A+D in Table
			32)
Methane	10702.85176/365	kg	Daily Basis 216 tons of dry waste (from
	/216.6344397=0.		section-2 calculations CH ₄ emissions are
	13		10702.85176 tons for 1 year) (E in Table 32)

Table 12. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 10 (Basis: 1 kg of dry waste)

-		Ň U	5 /
Processes	Amount	Unit	Comment
Carbon	55716.13506/365	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/216.6344397=0.		section-2 calculations CO ₂ emissions are
	704		55716.13506 tons for 1 year) (A+D in Table
			32) (E in Table 32)
Methane	16576.70134/365	kg	Daily Basis 216 tons of dry waste (from
	/216.6344397=0.		section-2 calculations CH ₄ emissions are
	21		16576.70134tons for 1 year)

		(Dublo: 1 Kg 0	
Processes	Amount	Unit	Comment
Carbon	72497.51245/365	kg	Daily Basis 216 tons of dry waste CO ₂ (from
Dioxide	/216.6344397=0.		section-2 calculations CO ₂ emissions are
	91		72497.51245tons for 1 year) (A+D in Table
			32)
Methane	21569.50783/365	kg	Daily Basis 216 tons of dry waste (from
	/216.6344397=0.		section-2 calculations CH ₄ emissions are
	27		21569.50783tons for 1 year) (E in Table 32)

Table 13. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 20 (Basis: 1 kg of dry waste)

Table 14. CH ₄ and CO ₂ emissions from landfill without gas collection (uncontrolled) year 30
(Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon Dioxide	77551.96618	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CO ₂ emissions are
Dioxide	/365/216.634439		77551.96618 tons for 1 year) (A+D in Table
	7=0.98		32)
Methane	23073.31225/365 /216.6344397=0. 29	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CH ₄ emissions are 23073.31225tons for 1 year) (E in Table 32)

Table 15. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 40 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	79074.33839/365	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/216.6344397=1.		section-2 calculations CO ₂ emissions are
	000035		79074.33839 tons for 1 year) (A+D in Table
			32)
Methane	23526.24944/365	kg	Daily Basis 216 tons of dry waste (from
	/216.6344397=0.		section-2 calculations CH ₄ emissions are
	298		23526.24944 tons for 1 year) (E in Table 32)

Table 16. CH₄ and CO₂ emissions from landfill without gas collection (uncontrolled) year 50 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	79532.86809/365	kg	Daily Basis 216 tons of dry waste (from
Dioxide	/216.6344397=1.		section-2 calculations CO ₂ emissions are
	01		79532.86809 tons for 1 year) (A+D in Table
			32)

Methane	23662.6715/365/ 216.6344397=0.2	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CH ₄ emissions are
	99		23662.6715 tons for 1 year) (E in Table 32)

Table 17.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 1 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	14486.90/365/21	kg	Daily Basis 216 tons of dry waste (from
Dioxide	6.6344397=		section-2 calculations CO ₂ emissions are
	0.1832		14486.90 tons for 1 year) (A+B+D in Table
			31)
Methane	692.96/365/216.6	Kg	Daily Basis 216 tons of dry waste (from
	344397= 0.00876		section-2 calculations CH ₄ emissions are
			692.96 tons for 1 year) (C+E in Table 31)

Table 18.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 5 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	57802.83/365/21	kg	Daily Basis 216 tons of dry waste (from
Dioxide	6.6344397 =		section-2 calculations CO ₂ emissions are
	0.731		57802.83 tons for 1 year) (A+B+D in Table
			31)
Methane	2764.90/365/216.	Kg	Daily Basis 216 tons of dry waste (from
	6344397 =	_	section-2 calculations CH ₄ emissions are
	0.034967		2764.90 tons for 1 year) (C+E in Table 31)

Table 19.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 10 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	89525.70/365/21	kg	Daily Basis 216 tons of dry waste (from
Dioxide	6.6344397 =	-	section-2 calculations CO ₂ emissions are
	1.13221		89525.70 tons for 1 year) (A+B+D in Table
			31)
Methane	4282.31/365/216.	kg	Daily Basis 216 tons of dry waste (from
	6344397 =		section-2 calculations CH ₄ emissions are
	0.054157		4282.31 tons for 1 year) (C+E in Table 31)

Table 20.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 20 (Basis: 1 kg of dry waste)

	Kg of dry waster					
Processes	Amount	Unit	Comment			
Carbon Dioxide	116490.32/365/2 16.6344397 = 1.473226	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CO ₂ emissions are			

			116490.32tons for 1 year) (A+B+D in Table 31)
Methane	5572.12/365/216.	kg	Daily Basis 216 tons of dry waste (from
	6344397 =		section-2 calculations CH ₄ emissions are
	0.0704693		5572.12 tons for 1 year) (C+E in Table 31)

Table 21.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 30 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment
Carbon	124611.91/365/2	kg	Daily Basis 216 tons of dry waste (from
Dioxide	16.6344397 =		section-2 calculations CO ₂ emissions are
	1.575938		124611.91 tons for 1 year) (A+B+D in
			Table 31)
Methane	5960.61/365/216.	kg	Daily Basis 216 tons of dry waste (from
	6344397 =		section-2 calculations CH ₄ emissions are
	0.075382		5960.61 tons for 1 year) (C+E in Table 31)

Table 22.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 40 (Basis: 1 kg of dry waste)

kg of dry waste)					
Processes	Amount	Unit	Comment		
Carbon	127058.08/365/2	kg	Daily Basis 216 tons of dry waste (from		
Dioxide	16.6344397 =		section-2 calculations CO ₂ emissions are		
	1.606874		127058.08 tons for 1 year) (A+B+D in		
			Table 31)		
Methane	6077.61/365/216.	kg	Daily Basis 216 tons of dry waste (from		
	6344397 =		section-2 calculations CH ₄ emissions are		
	0.076862		6077.61 tons for 1 year) (C+E in Table 31)		

Table 23.CH₄ and CO₂ emissions from landfill with gas collection and flaring year 50 (Basis: 1 kg of dry waste)

	8				
Processes	Amount	Unit	Comment		
Carbon	127794.86/365/2	kg	Daily Basis 216 tons of dry waste (from		
Dioxide	16.6344397 =	_	section-2 calculations CO ₂ emissions are		
	1.61619		127794.86tons for 1 year) (A+B+D in Table		
			31)		
Methane	6112.86/365/216.	kg	Daily Basis 216 tons of dry waste (from		
	6344397 =		section-2 calculations CH ₄ emissions are		
	0.0773		6112.86 tons for 1 year) (C+E in Table 31)		

Table 24.CH₄ and CO₂ emissions from landfill with gas collection and electricity generation year 1 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment		
Carbon Dioxide	14486.90/365/2 16.6344397= 0.1832	kg	Daily Basis 216 tons of dry waste (from section-2 calculations CO ₂ emissions		

			are 14486.90 tons for 1 year) (A+B+D in Table 31)
Methane	692.96/365/216 .6344397= 0.00876	Kg	Daily Basis 216 tons of dry waste (from section-2 calculations CH ₄ emissions are 692.96 tons for 1 year) (C+E in Table 31)

Electricity generation	104025/365=	MWh	11773.93 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Table 25.CH ₄ and CO ₂ emissions from landfill with gas collection and electricity year 5 (Basis: 1	1
kg of dry waste)	

Processes	Amount	Unit	Comment	
Carbon Dioxide	57802.83/365/2	kg	Daily Basis 216 tons of dry waste (from	
	16.6344397 =		section-2 calculations CO ₂ emissions	
	0.731		are 57802.83 tons for 1 year) (A+B+D	
			in Table 31)	
Methane	2764.90/365/21	Kg	Daily Basis 216 tons of dry waste (from	
	6.6344397 =		section-2 calculations CH ₄ emissions	
	0.034967		are 2764.90 tons for 1 year) (C+E in	
			Table 31)	

Electricity generation	104025/365=	MWh	46978.08 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Table 26.CH₄ and CO₂ emissions from landfill with gas collection and electricity year 10 (Basis: 1 kg of dry waste)

1 kg of dry waste)					
Processes	Amount	Unit	Comment		
Carbon Dioxide	89525.70/365/2	kg	Daily Basis 216 tons of dry waste (from		
	16.6344397 =		section-2 calculations CO ₂ emissions		
	1.13221		are 89525.70 tons for 1 year) (A+B+D		
			in Table 31)		
Methane	4282.31/365/21	kg	Daily Basis 216 tons of dry waste (from		
	6.6344397 =		section-2 calculations CH ₄ emissions		
	0.054157		are 4282.31 tons for 1 year) (C+E in		
			Table 31)		

Electricity generation	104025/365=	MWh	72760.19 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Processes	Amount	Unit	Comment	
Carbon Dioxide	116490.32/365/	kg	Daily Basis 216 tons of dry waste (from	
	216.6344397 =	~ <u>~</u>	section-2 calculations CO ₂ emissions	
	1.473226		are 116490.32tons for 1 year) (A+B+D	
			in Table 31)	
Methane	5572.12/365/21	kg	Daily Basis 216 tons of dry waste (from	
	6.6344397 =	-	section-2 calculations CH ₄ emissions	
	0.0704693		are 5572.12 tons for 1 year) (C+E in	
			Table 31)	

Table 27.CH₄ and CO₂ emissions from landfill with gas collection and electricity year 20 (Basis: 1 kg of dry waste)

Electricity generation	104025/365=	MWh	94675.14 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Table 28.CH₄ and CO₂ emissions from landfill with gas collection and electricity year 30 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment			
Carbon Dioxide	124611.91/365/ kg		Daily Basis 216 tons of dry waste (from			
	216.6344397 =		section-2 calculations CO ₂ emissions			
	1.575938		are 124611.91 tons for 1 year) (A+B+D			
			in Table 31)			
Methane	5960.61/365/21	kg	Daily Basis 216 tons of dry waste (from			
	6.6344397 =		section-2 calculations CH ₄ emissions			
	0.075382		are 5960.61 tons for 1 year) (C+E in			
			Table 31)			

Electricity generation	104025/365=	MWh	101275.80 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Table 29.CH₄ and CO₂ emissions from landfill with gas collection and electricity year 40 (Basis: 1 kg of dry waste)

T Kg OF dr y Waste)						
Processes	Amount	Unit	Comment			
Carbon Dioxide	127058.08/365/ kg		Daily Basis 216 tons of dry waste (from			
	216.6344397 =		section-2 calculations CO ₂ emissions			
	1.606874		are 127058.08 tons for 1 year) (A+B+D			
			in Table 31)			
Methane	6077.61/365/21	kg	Daily Basis 216 tons of dry waste (from			
	6.6344397 =	_	section-2 calculations CH ₄ emissions			
	0.076862		are 6077.61 tons for 1 year) (C+E in			
			Table 31)			

Electricity generation	104025/365=	MWh	103263.88 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Table 30.CH₄ and CO₂ emissions from landfill with gas collection and electricity year 50 (Basis: 1 kg of dry waste)

Processes	Amount	Unit	Comment		
Carbon Dioxide	127794.86/365/	kg	Daily Basis 216 tons of dry waste (from		
	216.6344397 =		section-2 calculations CO ₂ emissions		
	1.61619		are 127794.86tons for 1 year) (A+B+D		
			in Table 31)		
Methane	6112.86/365/21	kg	Daily Basis 216 tons of dry waste (from		
	6.6344397 =		section-2 calculations CH ₄ emissions		
	0.0773		are 6112.86 tons for 1 year) (C+E in		
			Table 31)		

Electricity generation	104025/365=	MWh	103862.68 Mwh electricity is
from Natural gas	287		generated/year from collected CH ₄
			annually (see Table 46 for calculations)

Peat pathway:

This part of the section gives the information on calculations of Peat pathway emissions included in SimaPro. The calculations for the peat pathway emissions are based on the results of a study 4 and are considered as an eco-profile of CO₂ equivalent factor in each stage of overall lifecycle.

Table 31. Emissions from peat moss manufacturing, transport and use (Basis 1 m³ peatmoss)

moss)							
Category	Unit	Harvest	Package	Transport	Soil	In-situ	
					application	decomposition	
GHG	kg CO ₂						
Emissions	equivalent	4.03	2.53	15.63	183	60.79	

Composting pathway:

This section gives the information on calculations of composting pathway emissions included in SimaPro.

Table 32. Eco-profile for composing decomposition emissions (CH₄ & N₂O). These factors are taken from IPCC biogenic report ³.

CH ₄ emission factor for composting	0.004	kg C	H ₄ /kg waste wet basis (From IPCC)
N ₂ O emission factor for composting	0.0003	kg N	V ₂ O/kg waste wet basis (From IPCC)

Table 33. Eco-profile for composing decomposition emissions (CO₂). This factor is taken from IPCC biogenic report 3 .

CO ₂ emission factor for composting	0.44	kg CO ₂ /kg dry solid waste (From IPCC)	
--	------	--	--

Table 34. Eco-profile for CO₂ Emissions from Compost Land Application:

Processes	Amount	Unit	Basis
Carbon Dioxide	.48*.5*.5*44/12=0	kg	1kg wet compost, 50% moisture,
	.44		50% elemental carbon, 48% active
			carbon ² ,

Table 35. Diesel Used in tractor for Heartland LCA Composting (Basis: 0.0435 kg diesel)

Processes	Amount	Unit	Comment
Diesel {Europe without	0.007400668097	kg	From SimaPro Database
Switzerland} market for	00986		
Alloc Def, S			
Diesel {RoW} market for	0.036199331902	kg	From SimaPro Database
Alloc Def, S	9901		

Synthetic fertilizer pathway:

The eco-profile used for P fertilizer is Phosphate fertilizer, as P_2O_5 | market for | Alloc Def, S. The eco-profile used for K fertilizer is Potassium fertilizer, as K_2O | market for | Alloc Def, S.

Table 36. Eco-profile for US mix fertilizer is" US_Mix_ecoprofile" Basis 1kg Nitrogen Fertilizers, as N US Mix (Heartland Project), S

Processes	Amount	Unit	Comment
Ammonia, liquid market for	.308*17/14		.308 from Adom supplementary;
Alloc Def, S	=0.374	kg	17/14 converts to N basis
			.308 from Adom Supplementary
Ammonia, liquid market for	.008*17/14		for ammonia aqua;
Alloc Def, S	=0.0097	kg	17/14 converts to N basis
Ammonium nitrate, as N market			
for Alloc Def, S	0.038	kg	
Ammonium sulfate, as N market			
for Alloc Def, S	0.025	kg	
Urea, as N market for Alloc Def,			
S	0.166	kg	Nitrogen Solution Component
Ammonium nitrate, as N market			
for Alloc Def, S	0.132	kg	Nitrogen Solution Component
Potassium nitrate market for			
Alloc Def, S	0.0003	kg	for Sodium nitrate
Urea, as N market for Alloc Def,			
S	0.237	kg	

			0.086 is other fertilizers from
Urea, as N market for Alloc Def,	0.086/3=0.0		liquid ammonia, ammonium
S	287	kg	nitrate, and urea
			0.086 is other fertilizers from
Ammonium nitrate, as N market	0.086/3=0.0		liquid ammonia, ammonium
for Alloc Def, S	287	kg	nitrate, and urea
			0.086 is other fertilizers from
Ammonia, liquid market for	0.086/3=0.0		liquid ammonia, ammonium
Alloc Def, S	287	kg	nitrate, and urea

Table 37. Emissions of N₂O from synthetic N fertilizer applied to Field: (Basis: 1kg synthetic N fertilizer)

)							
Processes	Amount	Unit	Basis				
Dinitrogen oxide	0.01325*44/14=0.042	kg	IPCC factor for N ₂ O Emissions				
			from Fertilizer land use01325				
		kg N in N ₂ O / N in digestate					
			applied to soil. 44 is MW of N ₂ O,				
			14 is for N.,				

Manure pathway:

Table 38. Manure lagoon Emissions (N₂O, CH₄ and CO₂) (Basis: 1kg dry manure)

Processes	Amount	Unit	Comment
Carbon Dioxide	368/2284.73=0.161	kg	368 kg CH ₄ /hd/year for
			2284.73 kg manure/hd/year ⁵
Methane	687/2284.732824=0.	kg	yearly 687 kg CH4/hd for
	301		2284.73 kg manure/hd/year ⁵
Dinitrogen mono	0.9/2284.732824=0.0	kg	0.9 kg N ₂ O/hd/year for
oxide	00394		2284.73 kg manure/hd/year ⁵

Table 39. Manure slurry storage Emissions (N₂O, CH₄ and CO₂) (Basis: 1kg dry manure)

Processes	Amount	Unit	Comment
Methane	101/2284.73=.0442	kg	yearly 101 kg CH ₄ /hd for
		_	2284.73 kg manure/hd/year ⁵
Dinitrogen mono	0.3/2284.73=0.00013	kg	0.3 kg N ₂ O/hd/year for
oxide	1	_	2284.73 kg manure/hd/year ⁵

Table 40. Manure lagoon Emissions (N₂O, CH₄ and CO₂) (Basis: 1kg dry manure)

Processes	Amount	Unit	Comment
Carbon Dioxide	754/2284.73=0.161	kg	754 kg CH ₄ /hd/year for
			2284.73 kg manure/hd/year ⁵
Methane	13/2284.732824=0.0	kg	yearly 13 kg CH ₄ /hd for
	0569		2284.73 kg manure/hd/year ⁵
Dinitrogen mono	1.1/2284.732824=0	kg	1.1 kg N ₂ O/hd/year for
oxide	000481		2284.73 kg manure/hd/year ⁵

Natural gas pathway:

1. Eco-profile used for natural gas extraction, process and distribution is 'Heat, central or small-scale, natural gas {RoW}| market for heat, central or small-scale, natural gas | Alloc Def, S'

	1 7	
Heartland Phase 1B Water Balance		
	Gallons per	
Digester Feed	day	Total Solids
Total Manure	157,475	11.0%
Total Paunch	48,482	23.7%
Total FOG Substrate	98,953	27.9%
Total Non-FOG Substrate	67,992	30.3%
Total CWCWD Water	42,658	0.1%
Total Lagoon Water Recycle	61,000	1.5%
Total Centrate Recycle	44,000	2.1%
Total Condensate/Once-Thru Recycle	<u>12,960</u>	0.1%
	533,520	14.8%

Table 41: Heartland Phase 1B Water Balance in AD Bio-CH₄ pathway.

Table 42: Calculation for Heartland biogas Project daily feedstock on Dry Mass Basis

Wx1	48482	gallons
density	8	lb/gallon
solid fraction	0.237	
	0.000453592	Mg/lb
Total Paunch	41.69502576	Mg (dry basis)
Wx2	98953	gallons
density	8	lb/gallon
solid fraction	0.279	
	0.000453592	Mg/lb
Total fog Substrate	100.1817334	Mg (dry basis)
Wx3	67992	
density	8	lb/gallon
solid fraction	0.303	
	0.000453592	Mg/lb
Total non-fog substrate	74.75768049	Mg (dry basis)
Total Wx	216.6344397	Mg (dry basis)

MCF	1	Generally, 1 for managed landfills
DOC	0.5	We assume, on dry basis food waste is
		50% C so DOC is 0.5.
DOCF	1	We assume all the Carbon in the food
		waste is metabolized in the landfill by
		bacteria so DOCF is 1.
F	0.5	Generally assumed to be 0.5
M'=MCF*DOC*DOCF*F	0.25	Mg C / Mg waste (dry basis)
L'=M'*16/12	0.333333333	Mg CH4 / Mg waste (dry basis)
K'=M'*44/12	0.916666667	Mg CO2 / Mg waste (dry basis)
M=M'*Total W _x	54.15860	Mg C / day (dry basis)
$L = L'*Total W_x$	72.2114799	Mg CH4 / day (dry basis)
K=K'*Total W _x	198.5815697	Mg CO2 / day (dry basis)

Table 42a: Calculation for Carbon, CH₄, CO₂ potential in landfill

M =Rate of food waste C (carbon) input to Landfill (Mg C /Mg waste)

- M' = C generation potential factor (Mg C/Mg waste)
- L' = CH₄ generation potential factor (Mg CH₄/Mg waste)
- K'=CO₂ generation potential factor (Mg CO₂/Mg waste)
- MCF = CH4 correction factor (fraction), typically 1 for managed landfills
- DOC = degradable organic carbon [fraction (Mg C in waste/Mg waste)]
- DOCF = fraction of DOC decomposed (fraction),
- F = fraction by volume of CH4 in landfill gas

Section-2

Section-2 gives information on calculation of landfill emissions in both steady state and timedependent state of two scenarios with uncontrolled and gas collection and flaring landfill systems.

1. Model derivation for the transient calculations of landfill anaerobic digestion (AD) emissions:

Carbon input rate to the landfill from food waste = a constant M [Metric tons carbon / Year] (refer table 42a) in an amount equal to the annual input of Denver food waste to the LaSalle AD facility.

Amount of carbon depending on time = $\frac{d\mu}{dt}$, where μ is the amount of food waste carbon in the landfill at any time.

Degradation rate for carbon in landfill follows first order kinetics = $k\mu$, where k/ is a first order degradation constant [yr⁻¹]. k=0.12 /yr.³

Carbon Balance on food waste transient emissions from a landfill:

(Rate of accumulation of carbon in landfill) = (rate of carbon input) – (rate of degradation of carbon by AD)

$$\frac{d\mu}{dt} = M - k\mu \implies \frac{d\mu}{dt} + k\mu = M$$

Which is in the form of $\frac{dy}{dx} + p(x)y(x) = Q(x)$

The solution for y(x) for such an equation is given by $y(x) = e^{-\int p dx} (\int e^{\int p dx} Q(x) dx + C)$

So the solution for $\mu(t)$ is $\mu(t) = e^{-\int k dt} (\int e^{\int k dt} M dt + C)$

$$\mu(t) = e^{-kt} (\int e^{kt} M \, dt + C) \implies \mu(t) = e^{-kt} (\frac{e^{kt}}{k} M + C)$$

Then $\mu(t)$ can be modified as $\mu(t) = \frac{1}{k}M + C e^{-kt}$

When t=0, the amount of food waste carbon in the landfill is zero, $\mu(t) = 0$, then the expression becomes $0 = \frac{1}{k}M + C$

Which gives for the integration constant, $C = -\frac{1}{k}M$ Then the expression for $\mu(t) = \frac{1}{k}M - \frac{1}{k}M e^{-kt}$

$$\mu(t) = \frac{1}{k} M(1 - e^{-kt})$$

The avoided carbon emissions from time dependent landfill are $\ k\mu$

$$= M(1 - e^{-kt})$$

The avoided CH_4 emissions from time-dependent landfill if 50% of food waste carbon is converted through AD to CH_4 is given by

$$= M/2(1 - e^{-kt}) * 16/12$$

The avoided CO_2 emissions from time-dependent landfill if 50% of food waste carbon is converted through AD to CO_2 is given by

$$= M/2(1 - e^{-kt}) * 44/12$$

Steady-state emissions occur when time goes to infinity, in which case the term e^{-kt} becomes zero and therefore steady-state CH₄ emissions are M/2 * 16/12 and for CO₂ steady-state emissions are M/2 * 44/12. Figures 1 & 2 flow diagram shows the landfill CO₂ and CH₄ generation and emission scenarios for both uncontrolled and controlled landfill systems.

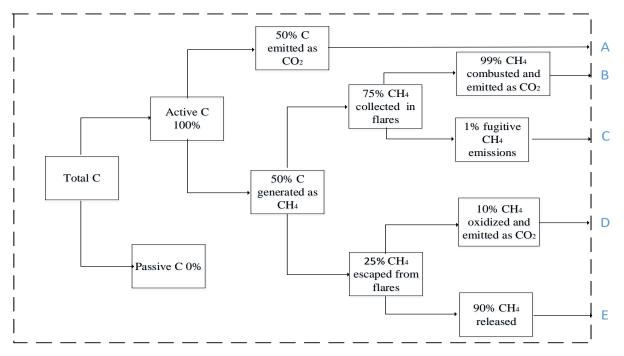


Figure 1: Flow diagram of landfill emissions with gas collection system and flaring

Pathway(landfill	A (Mg CO ₂ /	B (Mg CO ₂ /	C (Mg CH ₄ /	D (Mg	E (Mg
gas collection and	year)	year)	year)	CO ₂ / year)	CH ₄ / year)
flaring)					
Year1	8196.2	6085.7	22.3	204.9	670.6
Year5	32703.1	24282.0	89.1	817.5	2675.7
Year10	50651	37608.3	138.1	1266.2	4144.1
Year20	65906.8	48935.8	179.7	1647.6	5392.3
Year30	70501.7	52347.5	192.2	1762.5	5768.3
Year40	71885.7	53375.1	196.0	1797.1	5881.5
Year50	72302.6	53684.6	197.1	1807.5	5915.6
Steady state	72482.2	53818	197.6	1812.0	5930.3

Table 43. Landfill	emissions	with	gas	collection	system	and flaring	
			0				

99% of the collected methane is used to produce the electricity so the collected methane is B1 in the Table 44

Pathway(landfill	A (Mg CO ₂ /	B1 (Mg CH ₄ /	C (Mg CH ₄ /	D (Mg	E (Mg CH ₄ /
gas collection and	year)	year) for	year)	CO ₂ / year)	year)
flaring)		electricity	Fugitive		oxidation
			emissions		emissions
Year1	8196.2	2212.99	22.3	204.9	670.6
Year5	32703.1	8829.85	89.1	817.5	2675.7
Year10	50651	13675.78	138.1	1266.2	4144.1
Year20	65906.8	17794.84	179.7	1647.6	5392.3
Year30	70501.7	19035.48	192.2	1762.5	5768.3
Year40	71885.7	19409.16	196.0	1797.1	5881.5
Year50	72302.6	19521.70	197.1	1807.5	5915.6
Steady state	72482.2	19767.89	197.6	1812.0	5930.3

Table 44. Landfill emissions with gas collection system and electricity generation

Electricity generation is calculated based on the efficiency of IC engine, which is assumed 35% efficient and the heating value of methane is 37 MJ/m^3 with density 0.656 kg/m³ and Calculation for the electricity generation with collected methane in landfill for case 2 scenario 3:

 Table 45. Calculation for electricity generation from a Landfill with gas collection system and electricity generation

Heating Value of CH ₄	37	MJ/m ³
Density of CH ₄	0.656	kg/m ³
Efficiency of I.C engines	0.35	35% efficient in general
joule	0.00027	wh
Electricity produced	0.00532	Mwh/kg CH ₄

 Table 46. Year wise electricity generation from a Landfill with gas collection system and electricity generation.

Pathway (landfill gas collection and	B1 (Mg CH ₄ / year)	Electricity produced in
electricity generation)	for electricity	Mwh /year
Year1	2212.99	2212.99*0.00532*1000
		=11773.93
Year5	8829.85	8829.85*0.00532*1000
		=46978.08
Year10	13675.78	13675.78*0.00532*1000
		=72760.19
Year20	17794.84	17794.84*0.0053*1000

		=94675.14
Year30	19035.48	19035.48*0.00532*1000
		=101275.80
Year40	19409.16	19409.16*0.00532*1000
		=103263.88
Year50	19521.70	19521.70*0.00532*1000
		=103862.68
Steady state	19767.89	19767.89*0.00532*1000
		=104025

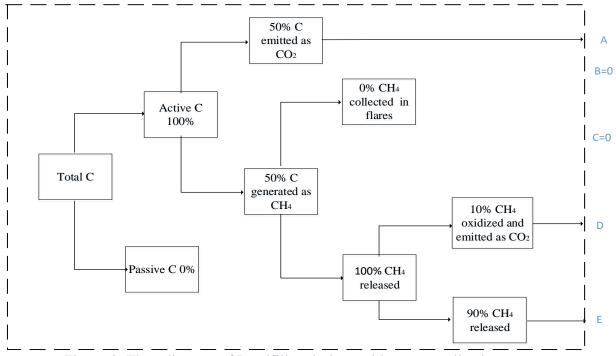


Figure 2: Flow diagram of Landfill emissions without gas collection system

Pathway	A (Mg CO ₂ / year)	D (Mg CO ₂ / year)	E (Mg CH ₄ / year)
(uncontrolled			
landfill system)			
Year1	8196.2	819.6	2682.4
Year5	32703.1	3270.3	10702.8
Year10	50651.0	5065.1	12174.9
Year20	65906.8	6590.6	21569.5
Year30	70501.7	7050.1	23073.3
Year40	71885.7	7188.5	23526.2
Year50	72302.6	7230.2	23662.6
Steady state	72482.2	7248.2	23721.4

Section-3

Section-3 gives more information on calculations of inputs to the analysis in SimaPro. The inputs for the AD Bio-CH₄ pathway shown in Table 48 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 1-6, 41.

Table 48 Case 1: AD Bio-CH₄ pathway:

Pathway	Process	Amount	Unit	Comment
AD Bio-	1.Manure	114000*8/2.205/	t*km	7 miles distance from farm to
CH ₄	transportation	1000*7*1.62 =		facility (A total manure
pathway		4.69×10^3		transported is 114,000
				gallons/day, assumed 8lb/gallon
				as density of substrate)
		114000*8/2.205/	t*km	Return trip is empty, the truck
		1000*7*1.62*0.8		uses 80% of the fuel
	2.Food waste	$=3.75 \text{ x}10^{3}$ $200000*8/2.205/$	t*km	49 miles distance from Denver
	transportation	1000*49*1.62	U' KIII	to AD facility (total food waste
	uansportation	$= 5.76 \text{ x} 10^4$		transported from Denver is
				200,000 gallons, assumed
				8lb/gallon as density of
				substrate)
		200000*8/2.205/	t*km	Return trip is empty, the truck
		1000*49*1.62*0.	t Mili	uses 80% of the fuel
		$8 = 4.61 \text{ x} 10^4$		
	3.AD process;	5.5*24 = 132	MWh	AD facility used 5.5 MW line,
	electricity and			Colorado grid eco-profile used
	heating of inlet			(provided in Table 4)
	food waste and	533520*8*1*(12	btu	Natural gas emissions: 533520
	manure	$(5-50) = 3.2 \times 10^8$		gallons/day in section 1 table 41.
				(Phase 1B Water balance), 8 lb. /
				gallons, 1 btu / (lb. F). 125 F for
				AD temp. 50 F for Colorado
				Average
	4.Bio-CH ₄	4700*1054.8/50=	kg	4700dekatherms,1054.8MJ/deka
	Combustion	99151.2		therm, Lower heating value
				50MJ/kg
				(Biogas composition 65% CH ₄ ,
				29% CO ₂ , 6% H ₂ O by volume).

All the input data for AD Bio-CH₄ pathway provided by Jim Potter, Ag Energy LLC.

			Eco profile listed in Table 1 is used.
5. CO ₂	4700*1054.8/50=	kg	4700dekatherms,1054.8MJ/deka
Emissions from	99151.2		therm, Lower heating value
AD			50MJ/kg
			(Biogas composition 65% CH ₄ ,
			29% CO ₂ , 6% H ₂ O by volume).
			Eco profile listed in Table 1 is
			used.
5.	244.66*500*49*1	t*km	320 cu.yd. of compost is
Transportation	.62/1000=9.71		transported from AD facility to
of compost	x10 ³		Denver market. Density-500
from AD to			kg/m ³ . Denver city 49 miles
Denver			away from AD facility.
	.8*244.66*500*4	t*km	From Facility to Denver 80% of
	9*1.62/1000=7.7		the fuel consumed on offload
	$7 \text{ x} 10^3$		truck
6. Digestate	217*23.74 = 5.15	lb.	217000 gallons/day digestate
land application	x10 ³		23.74lb N content as N
of N			fertilizer/1000 gallons digestate,
			which emits as N ₂ O on land
			application (N ₂ O emission factor of 0.01325 is used) Eco profile
			listed in Table 6 is used ³
7. Compost	320*500*0.76455	kg	320 cubic yards of solid
field application	$= 1.22 \text{ x} 10^5$	_	compost, 500 kg/m ³ density,
			0.764555 m ³ /cubic yard
			Eco profile listed in Table 5 is
			used.

The inputs for the BAU peat pathway shown in Table 49 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Table 31.

Table 49	Case	1:	Peat	pathway:
				1

D. 41	D		TT	0
Pathway	Process	Amount	Unit	Comment
Peat	1.Emissions from	790.63-244.66=546	m ³	320 cu. yd. of compost
pathway	peat moss			from AD, 790.63 cu. meter.
	manufacturing,			of compost from
	transport and use			composting process.
				Difference of 546 m ³ is
				replaced by Peat-Moss,
				conversion factor= 218/500

			⁴ . Eco profile listed in Table 31 is used.
2. Transportation of Peat-Moss from Canada to Denver	$0=1.43 \times 10^5$	t*km	1200 km from Saskatchewan to Denver city, Peat transported from Saskatchewan to Denver market. Density - 218 kg/m ³ ,
	.8*546*218*1200/1 000=1.14 x 10 ⁵	t*km	Return trip is empty, the truck uses 80% of the fuel

The inputs for the BAU compost pathway shown in Table 50 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 32-35.

Pathway	Process	Amount	Unit	Comment
Composting	1.Manure	62/(1-	t*km	62Mg of dry manure
pathway	transportation	0.85)*7*1.62=4.6		transported from 7 miles
		x 10 ³		(1.62 km/mile)) 85%
				moisture
		.8*62/(1-	t*km	On empty return trip, 80%
		0.85)*7*1.62=3.73		of fuel is used.
		x 10 ³		
	2.Wood pallets	44.26*5 = 221.3	t*km	44.26 Mg of pallets
	transportation			transported from 5 km
				distance from composting
				facility
		0.8*44.26*5 = 177	t*km	On empty return trip 80% of
				fuel is used.
	3.Food waste	216/(17)*70*1.62	t*km	216 of food waste
	transportation	$= 8.11 \text{ x } 10^4$		transported from 70 miles,
				70% moisture content
		0.8*216/(1-	t*km	On empty return trip 80% of
		.7)*70*1.62=6.49		fuel is used.
		x 10 ⁴		
		5909.4*0.832 =	kg	5909.4 liters of diesel is
		$4.92 \text{ x } 10^3$		used by process equipment

Table 50 Case 1: BAU composting pathway:

4.Diesel used in			and petroleum diesel has a
tractor for			density of 0.832 kg/liter ⁵
composting			Eco profile listed in Table
			35 is used
	20.2*0.832=16.8	kg	Diesel used by turner ⁵
			Eco profile listed in Table
			35 is used
	713.8*0.832=594	kg	Diesel used for grinding ⁵
			Eco profile listed in Table
			35 is used
5.Composting	322.94	ton	Decomposition emissions
decomposition			from feedstock 1. Food
emissions (CO ₂)			waste -216 Mg 2. pallets-
			44.26 Mg 3.manure 62 on
			dry basis manure
			413.675904 on wet basis
			(15% solids)
			Eco profile listed in Table
			33 is used ³
6.Composting	1180.05	ton	Decomposition emissions
decomposition			from feedstock
emissions			1.biowaste- 722.1103 Mg
$(CH_4\&N_2O)$			2.pallets- 44.26 Mg
(0114001 120)			(Supporting docs)
			3.manure- 413.675904 on
			wet basis
			Eco profile listed in Table 32 is used ³
7.0	1100* 225 205 2	4.5.4	
7.Compost land	1180*.335= 395.3	ton	33.5% of initial feedstock is
application			converted to compost, a
			total of 1180 tons of
			feedstock ⁶
			Eco profile listed in Table
			34 is used.

The inputs for the BAU synthetic fertilizer pathway shown in Table 51 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 36, 37.

Pathway	Process	Amount	Unit	Comment
Synthetic fertilizer pathway	1.Emissions from synthetic fertilizers manufacturing process and market	217000/1000*2 3.74=5.15 x10 ³	lb.	This N fertilizer is amount that would be displaced by digestate. Ammonium-N (lb/1000/gal)
		217000/1000*7. 63=1.66 x10 ³	lb.	This N fertilizer is amount that would be displaced by digestate. Eco profile used: Phosphate fertiliser, as P ₂ O ₅ market for Alloc Def, S
		217000/1000*2 9.55=6.41 x10 ³	lb.	This N fertilizer is amount that would be displaced by digestate. Eco profile used: Potassium fertiliser, as K ₂ O market for Alloc Def, S
	2. Transportation of synthetic fertilizers from LaSalle market to fields	13200*0.00045 3592*7.5=44.9	t*km	7 miles from LaSalle market to farm lands, 217000/1000*29.55+21700 0/1000*7.63+217000/1000* 23.74=13200 0.000453592 Metric tons/lb. 4.7 miles = 7.5 km
		.8*13200*0.000 453592*7.5=35 .9	t*km	Return trip is empty, the truck uses 80% of the fuel
	3. Synthetic fertilizers land application	217*23.74 = 5.15 x10 ³	lb.	217000 gallons/day digestate 23.74lb N content as N fertilizer/1000 gallons digestate, which emits as N ₂ O on land application (N ₂ O emission factor of 0.01325 is used) Eco profile listed in Table 37 is used. ³

Table 51	Case 1:	BAU	synthetic	fertilizer	pathway:
----------	---------	-----	-----------	------------	----------

The inputs for the BAU natural gas pathway shown in Table 52 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1.

Pathway	Process	Amount	Unit	Comment
Natural gas pathway	1.Emissions from natural gas extraction processing, distribution and usage	4700*1055.06*. 8=3.97 x10 ⁶	kg	4700 dekatherms/ day 1055.06 MJ/Dekatherm. 0.8 is heat conversion efficiency.

Table 52 Case 1: BAU natural gas pathway:

The inputs for the avoided landfill without gas collection system (uncontrolled) pathway shown in Table 53 along with comments on the assumptions, conversion factors, and other values. Ecoprofiles for each of these inputs are shown in Section 1 in Tables 7,10-16

Case 2: Avoided pathways to AD Bio-CH4 pathway:

Avoided	Process	Amount	Unit	Comment
Landfill pathway with gas collection	1.Transportation of food waste	216.6*2*12*1.6 2=8.42 x10 ³	t*km	216.6 Mg dry basis, 2 is for 50% moisture, 12miles up, 1.62 km/mi
and flaring		.8*216.6*2*12* 1.62=6.74 x10 ³	t*km	Return trip is empty, the truck uses 80% of the fuel
	2. CH ₄ and CO ₂ emissions from landfill without gas collection and flaring	216.6344	tons	Total Dry mass 216.63444 which accounts the emissions Eco profile listed in Table 7,10-16 is used

Table 53 Avoided landfill pathway without gas collection system(uncontrolled)

The inputs for the avoided landfill with gas collection and flaring pathway shown in Table 54 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 8, 17-23.

Avoided	Process	Amount	Unit	Comment
Landfill pathway with gas	1.Transportation of food waste	216.6*2*12*1.6 2=8.42 x10 ³	t*km	216.6 Mg dry basis, 2 is for 50% moisture, 12miles up, 1.62 km/mile
collection and flaring		.8*216.6*2*12* 1.62=6.74 x10 ³	t*km	Return trip is empty, the truck uses 80% of the fuel
	2. CH ₄ and CO ₂ emissions from	216.6344	tons	Total Dry mass 216.63444 which accounts the

Table 54 Avoided landfill pathway with gas collection system and flaring

landfill with gas collection and flaring	emissions Eco profile listed in Tables 8,17-23 is used

The inputs for the avoided landfill with gas collection and electricity generation pathway shown in Table 55 along with comments on the assumptions, conversion factors, and other values. Ecoprofiles for each of these inputs shown in Section 1 in Tables 9, 24-30.

Table 55 Avoided landfill pathway with gas collection system and ele	lectricity generation
--	-----------------------

Avoided	Process	Amount	Unit	Comment
Landfill pathway with gas	1.Transportation of food waste	216.6*2*12*1.6 2=8.42 x10 ³	t*km	216.6 Mg dry basis, 2 is for 50% moisture, 12miles up, 1.62 km/mile
collection and electricity		.8*216.6*2*12* 1.62=6.74 x10 ³	t*km	Return trip is empty, the truck uses 80% of the fuel
generation	2. CH ₄ and CO ₂ emissions from landfill with gas collection and electricity generation	216.6344	tons	Total Dry mass 216.63444 which accounts the emissions Eco profile listed in Tables 9,24-30 is used
	3. Electricity generation from Natural gas	Varies over time	Mwh	Total electricity generated over 50 years starting from year 1 till the steady state is listed from Tables 9,24-30

The inputs for the avoided synthetic fertilizer pathway shown in Table 55 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 36, 37.

Avoided	Process	Amount	Unit	Comment
Synthetic fertilizer pathway	fertilizer synthetic fertilizers	217000/1000*2 3.74=5.15 x10 ³	lb.	This N fertilizer is amount that would be displaced by digestate. Eco profile used: Nitrogen
				Fertilizers, as N US Mix (Heartland Project), S in Table 36
		217000/1000*7. 63=1.66 x10 ³	lb.	This N fertilizer is amount that would be displaced by digestate.

Table 56 Avoided synthetic fertilizer pathway

	217000/1000*2 9.55=6.41 x10 ³	lb.	Eco profile used: Phosphate fertiliser, as $P_2O_5 \mid$ market for \mid Alloc Def, S This N fertilizer is amount that would be displaced by digestate. Eco profile used: Potassium fertiliser, as $K_2O \mid$ market for \mid Alloc Def, S
2. Transportation of synthetic fertilizers from LaSalle market to fields	13200*0.00045 3592*7.5=44.9	t*km	 4.7 miles from LaSalle market to farm lands, 217000/1000*29.55+21700 0/1000*7.63+217000/1000* 23.74=13200; 0.000453592 Metric tons/lb.; 4.7 miles = 7.5 km;
	.8*13200*0.000 453592*7.5=35 .9	t*km	Return trip is empty, the truck uses 80% of the fuel

The inputs for the avoided peat pathway shown in Table 57 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Table 31.

Avoided	Process	Amount	Unit	Comment
Peat pathway	1.Emissions from	244.66	m ³	320 cu. yd. of compost from
	peat moss			AD, Which displaces the
	manufacturing,			equivalent peat production
	transport and use			on volume basis of peat to
				compost assumed 1:16_Eco
				profile listed in Table 31 is
				used
	2. Transportation of	244.66*218*12	t*km	1200 km from
	Peat-Moss from	00/1000=6.4 x10 ⁴		Saskatchewan to Denver
	Canada to Denver			city, Peat transported from
				Saskatchewan to Denver
				market. 218 kg/m ³ ,
		.8*244.66*218	t*km	Return trip is empty, the
		*1200/1000=		truck uses 80% of the fuel
		$5.12 \text{ x} 10^4$		

Table 57 Avoided peat pathway

The inputs for the avoided manure pathway shown in Table 58 along with comments on the assumptions, conversion factors, and other values. Eco-profiles for each of these inputs shown in Section 1 in Tables 38-40.

Avoided	Process	Amount	Unit	Comment
Manure pathway	1.Anaerobic lagoon storage emissions	62.05*.65= 40.3	tons	 62.05 metric tons of manure stored in lagoons daily if not transported to AD- 65% of dry mass diverted to lagoon ⁵. Eco profile listed in Table 38 is used
	2.Slurry storage emissions	62.05*.1= 6.21	tons	 62.05 tons of manure stored in slurries if not transported to AD facility 5-10 of dry mass % is sent to slurry tank Eco profile listed in Table 39 is used
	3.Solid pile emissions	62.05*.25= 15.5	tons	62.05 tons of manure stored in slurries if not transported to AD facility 25% in Colorado the manure sent to solid pile ⁵ . Eco profile listed in Table 40 is used

Table 58 Avoided manure pathway

Section-4

Table 59: Calculation of overall nationwide resource assessment on diversion of food waste and manure to Bio-CH₄ system.

manure to bio-ent system.						
99.15	tons Bio-CH4/216 tons of dry food waste					
From Jim Potter Heartland biogas data:						
4700	Dekatherms Bio-CH ₄ / 278 tons of dry food waste and manure					
1054.8	MJ/Dekatherm					
4957560	MJ Bio-CH ₄ /216 tons dry food waste and 62 tons of manure.					
Natural gas calculation:	Natural gas calculation:					
47.4	MJ/kg Lower Hea		ting Value			
1000	kg/ton					
105.17	tons Natural gas eq./ 278 tons of dry food waste & manure					
	Million metric tons of natural gas eq. / 8.28 million tons of dry food					
	waste (36 million tons food waste /year in US 2015, 23% solids					
4.03	blended with 2.38 million tons of dry manure)					
Total Natural gas consumption	27,457,587		million cubic feet/year in US (2015 EPA)			
0.044	lb/ft3					
1,208,133.83	Million lb/year					
548.0	million metric tons/year					
	Ratio of eq. Natural gas produced through Bio-CH ₄ to US Natural					
0.0074	Gas demand on equal energy basis					
	% of total consumption displaced by food waste and manure					
0.74	through AD process.					

Calculation for estimating GHG emission savings nationwide in US:

On diversion of food waste from uncontrolled landfill saves 17.76 kg CO_2 eq./kg Bio-CH₄ and avoiding gas collection and flaring landfills saves 5.49 kg CO_2 eq./ kg Bio-CH₄ There are a total of 1908 landfills in the US under operation, out of which 400 are uncontrolled and 850 with gas collection and flaring, rest gas collection and electricity generation with a savings of 3.51 CO₂ eq./kg Bio-CH₄

So overall savings are = $\frac{400*17.76+850*5.49+658*3.51}{400+850+658}$ = 7.37 kg CO₂ eq. / kg of Bio-CH₄ 8.28 million tons of dry food waste and 2.38 million tons of dry manure produces 3.8 million tons of Bio-CH₄. 3.8 million tons saves 7.37*3.8 million tons of CO₂=28.01 million tons of CO₂

There are about an overall 7 billion tons of CO_2 eq. in US and the savings from AD (Anaerobic digestion) on diverting the food waste and manure from landfills and manure piles would account for a savings of 0.41 % of overall GHG emissions.

References:

- 1. Naskeo Environment. Biogas Composition. 2009; <u>http://www.biogas-renewable-energy.info/biogas_composition.html</u>. Accessed 09/ 06, 2016.
- 2. ICF International. *Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM)*: U.S. Environmental Protection Agency Office of Resource Conservation and Recovery;February 2016.
- **3.** RTI International. Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions from Selected Source Categories:Solid Waste Disposal Wastewater Treatment Ethanol fermentation: U.S. Environmental Protection Agency;December 14, 2010.
- 4. Peat and peatland, Canadian environmental life cycle assessment, product fact sheet. 2016; <u>http://tourbehorticole.com//wp-content/uploads/2015/01/cycle.pdf</u>. Accessed 09/ 06, 2016.
- 5. Owen JJ, Silver WL. Greenhouse gas emissions from dairy manure management: a review of field-based studies. *Global change biology*. 2015;21(2):550-565.
- 6. Saer A, Lansing S, Davitt NH, Graves RE. Life cycle assessment of a food waste composting system: environmental impact hotspots. *Journal of Cleaner Production*. 2013;52:234-244.